浅述城市综合管廊消防标准及火灾研究
为系统把握当前消防标准化及火灾研究工作的成果及其不足,简述城市综合管廊基本概念,回顾国内外综合管廊发展历史,分析综合管廊火灾危险性,论述综合管廊火灾与交通隧道火灾的区别;从基础问题和实践应用2个层面,综述综合管廊火灾研究的成果和总体进展;总结国内外消防设计规范要求的差异和国内标准的发展状况,全面展望未来综合管廊火灾研究方向。研究根据结果得出:基础问题的研究方法以借鉴交通隧道领域为主,研究内容有局限性,研究课题间联系不紧密;实践应用研究局限于工程经验探讨,消防规范普遍缺乏专项标准。
城市综合管廊作为一类集约使用的新型隧道,提供了市政管线可持续发展的新途径,但其潜在的火灾危害也不可以小看。近年来发生了多起综合管廊火灾案例,如日本世田谷电缆管廊因用火不慎酿成火灾;韩国19941997年发生4起线缆故障短路引发管廊火灾事故。
公路隧道、地铁隧道等传统交通隧道火灾研究已取得一些系统性成果。BEARD等*早从工程实践的角度总结了火灾探测和各类主、被动防火策略的问题、要求、当前科学技术发展,提出了交通隧道火灾下的人员应急措施、消防安全管理方案和工程应急程序的建议。INGASON等着重于梳理隧道火灾问题的理论科学进展(物理现象和动力学基础),同时引申出相应的预测方法指南。这2本专著为隧道火灾研究与消防实践提供了详实的指导,但都未涉及综合管廊火灾问题。当前对综合管廊这类新型隧道火灾的研究仍处于起步阶段。早期管廊火灾的研究内容局限于工程经验探讨,近年来,开始利用试验、仿真等科学手段进行论证,探索相应的火灾规律,但相比成熟系统的交通隧道火灾研究还不够完善,未曾明确综合管廊与交通隧道两者的差异带来的火灾问题和研究方法的区别。张书豪综述了综合管廊燃气火灾和爆炸安全的相关研究成果,但是缺乏对综合管廊普遍发生电缆火灾的研究成果的归纳和探讨。
鉴于此,首先从综合管廊基本概念、发展历史和火灾危险性3个角度简述本文研究对象,接着通过对比交通隧道火灾问题,突出综合管廊火灾问题的特殊性。然后从基础问题和实践应用2个层面,综述综合管廊火灾研究的*新成果和总体进展;总结国内外消防设计的规范要求与发展状况。*后提出当前综合管廊火灾研究的不足,展望未来的研究方向,以期为管廊消防规范体系建设、开展实践应用研究,以及保障城市生命线长治久安提供参考。
综合管廊定义为建于城市地下用于容纳2类及以上城市工程管线的构筑物及附属设施,一般容纳的市政管线有供水管道(包括给水管道、中水管道和消防管道)、排水管道(包括雨水管道和污水管道)、燃气管线、电力电缆、通信电缆和热力管道等。
根据管廊收容的管线等级、数量、输送性质,可将其分为干线综合管廊、支线综合管廊和缆线管廊。根据不同工程条件,综合管廊能够使用矩形断面、圆形断面和马蹄形断面等形式。综合管廊内容纳的管线具有不一样的火灾危险性,通常将不同危险等级的管线分开收容在相互独立的舱室,采用具有一定能抗住火焰的极限的不燃性结构分隔不同的舱室。因此,也可根据舱室数量分为单舱综合管廊、双舱综合管廊和多舱综合管廊。
建设综合管廊来整合市政设施*早可追溯到罗马帝国时代,当时的工程师将给水管线和污水系统合并设置。该设计理念此后被忽视,直到19世纪法国将巴黎的市政设施改造成可容人通过的隧道,同时容纳多种管线,现代管廊系统的雏形由此诞生。此后综合管廊在得到飞速的发展。张竹村梳理了世界综合管廊发展史后总结出3个阶段及其特点,我国综合管廊建设也经历了4个阶段。
借鉴综合管廊在近200年的发展经验,我国当前稳步推进管廊建设的启示包括:充分借鉴管廊发展的欧洲模式和日本模式,促进绿色发展;完善法律和法规体系,规范管廊建设和改造;统筹管廊建设时序和地域,实现地上地下统一规划;推进新工艺(大数据、物联网、建筑信息模型、地理信息系统、机器人及智慧运维平台)的开发和使用;实现规划、建设、运维全过程综合化管理。
根据综合管廊灾害事故统计,地震和火灾是其面临的2大主要灾害。潜在的火灾危险类型主要有电力电缆火灾、燃气火灾和污水管道火灾等。基于综合管廊火灾案例研究,发现综合管廊内起火原因多样,通常有电气火灾(短路、接触不良、线路超负荷和漏电)、明火火灾(人为入侵、非标准化作业)和可燃物泄漏火灾。综合管廊火灾特点为:可燃物种类多,数量大,燃烧时间长;空间受限,燃烧过程复杂;火场环境恶劣,扑救困难;影响范围广。
近年来,针对综合管廊火灾问题的研究刚起步,而之前国内外学者已在相关的电力电缆燃烧特性及行为和隧道火灾动力学等方向开展了丰富的研究,取得了丰硕的研究成果。对隧道火灾的研究,着重于交通隧道火灾领域,其中封堵隧道火灾这类场景与综合管廊存在相似之处,但综合管廊作为一类特殊的市政隧道,与隧道在以下方面仍有所区别。
1)管廊结构。综合管廊的断面尺寸相比公路隧道通常更小,我国每个舱室根据相关规范划分为多个不超过200m的防火分区,因此,综合管廊内会存在封堵端墙。
2)可燃物种类及布置。管廊内可燃物如高压电缆和通信线缆,一般自顶棚至地面以一定间距成层布置,容易诱发强羽流撞击顶棚的热物理现象以及蔓延扩大。交通隧道内的交通工具发生火灾,一般更贴近地面。
3)通风排烟设计。交通隧道排烟设计是通过持续高效地控烟、排烟协助受困人员、车辆进行紧急疏散。而综合管廊排烟的首要目标是保障管线和结构安全,辅助消防扑救工作。目前综合管廊的通风排烟设计有事故中排烟模式和事故后排烟模式。
2)自主发明了1种热烟试验发烟系统和1种基于光流技术的烟气二维速度场测量方法。
3)研究了管廊常用10kV阻燃电缆的燃烧特性及行为,定量分析了管廊内燃烧强化现象。
4)建立了顶棚射流*高温度的纵向衰减预测模型,并重新判定了Delichatsios高估的斯坦顿数;数学表征了竖直温度分布的自相似性;整合2个维度(纵向、竖向),建立了综合管廊火灾强羽流驱动的顶棚射流二维温度场的经验性预测框架。
5)针对一端强制通风导致火源的热释放速率增大的现象,开展了考虑环境风下羽流特性的综合管廊事故中排烟模式的优化研究和事故后排烟模式研究,实践论证了相邻2个防火分区设置通风区间的可行性。正在进行和未来的研究方向包括:密闭环境下的电缆火灾动力学、通风等边界条件介入后的*火行为、综合管廊*优通风排烟策略及智能化控制、综合管廊机器人智慧探测方法等。
1999年,CANTO-PERELLO等梳理了综合管廊的发展历史,探讨了管廊在可持续发展中的关键作用和可行性。同时提出管廊日常运营时在消防安全方面必须要格外注意的要求。随后,建立了一种结合彩色编码尺度、德尔菲法和层次分析法的专家系统,为管线的安全系统规划决策提供支持。
管廊发展初期,工程师也从自身经验对消防设计提出意见:在初期火灾时可设置灭火器配置点,还可配置推车式干粉灭火器进行防护冷却灭火;提倡使用高压细水雾系统保护电缆。2012年,综合管廊国家标准、发布前(尽管其对消防联动控制系统要求条文也最简单,依赖设计者自己分析把握),对于消防灭火系统各地的消防审批部门有不同的做法,防火分区甚至有划分到300~900m。
综合管廊自动灭火系统通常有水喷雾、细水雾、超细干粉、气溶胶等多种。目前有2大趋势:
②高压细水雾灭火系统取代水喷雾灭火系统。TOMAR同样认为技术性能高压细水雾具备优势,目前争议点在于1套系统到底能保护多少个防护区。
监控与探测方面,慢慢的变多的学者和设计单位考虑选用光纤传感技术。1997年,ISHII等论证了管廊内应用光纤进行温度探测的可行性。王鹏等认为如考虑温度报警及时性及规范支持,使用光纤光栅测温技术;如更多考虑报警准确性、可靠性及后期维护费用,建议使用分布式光纤测温;如考虑初始造价,建议采用感温电缆。戴文涛建议电力舱接头区采用非接触缆式线型感温火灾探测器;谢军提出综合管廊群监控概念。
未来的管控需要应用物联网、人工智能、建筑信息模型、地理信息系统、云计算、大数据等新技术,搭建实时共享、仿真及分析功能的综合管廊可视化管理平台,纳入智能消防应急疏散系统,开发巡检机器人补充甚至代替人员巡检。
我国在统筹、指导新建、扩建和改建的综合管廊指南是《城市综合管廊工程技术规范》(GB508382015)(简称新版)。在消防安全方面,相对于《城市综合管廊工程技术规范》(GB508382012)(简称旧版),新版规定更明确,同时体现了规划先行、适度超前、因地制宜、统筹兼顾的原则。
世界范围内,综合管廊的消防设计应根据国情和实践情况研究制定,当涉及具体消防设计时,不同的规范要求,乃至工程实施存在比较大差异。在结构设计上,类似我国要求,西班牙Lezkairu综合管廊工程、卡塔尔Lusail城市综合管廊采用防火墙结合防火门划分防火分区。但Lezkairu管廊分区长度达到400m;韩国20世纪建造的管廊甚至不设防火分区,某些研究者提出的建议也是*低500m。阿布扎比管廊设计手册指出防火墙的设置依照地方当局的要求,在大多数情况下要,并非强制。中国台湾的《共同管道工程设计规范》也未对设置防火分区作出明确要求。通风排烟设计上,我国推拉型纵向通风方式与日本的要求及其他多数国家的实际案例基本一致。印度不设置防火分区,采用更为经济的射流风机形式。相比我国执行事故后机械排烟,西班牙、马来西亚则依据烟气探测自动触发排烟系统,进行火灾事故中排烟。Lezkairu管廊要求排烟风机在400℃以内持续工作2h。
近年来,我国连续发布了《城市工程管线综合规划规范》、《城镇综合管廊监控与报警系统工程技术标准》、《城市地下综合管廊建设规划技术导则》和《城市地下综合管廊运行维护及安全技术标准》,与此同时,一些行业协会,如中国工程建设标准化协会牵头制定《城市地下综合管廊管线工程作业规程》、《装配式钢结构地下综合管廊工程作业规程》也正在编制,推动综合管廊规范化进程。中国市政工程协会也立项了《城市综合管廊消防设施作业规程》和《城市综合管廊通风设施作业规程》等标准编制。
地方层面,各省级甚至地级市建设部门都在修订适宜当地实施的综合管廊规程,统计见表1。
*近,海南省和深圳市分别颁布了《城市综合管廊消防安全作业规程》、《城市综合管廊消防系统工程技术规范》(征求意见稿),这是目前仅有的消防规范。
综合管廊火灾研究在各国学者的紧密推动下,已经取得了初步的成果,相关消防标准的制定也具备一定的发展,其中存在的不足分析如下:
1)综合管廊的基础火灾问题的研究思路以借鉴传统交通隧道的成果为主,适用性很少得到充分的论证,研究内容还停留在对防灭火效果的验证、比选以及模型修正阶段,缺乏对综合管廊火灾态势演化机制的新理论支撑,没形成系统、严密、完善的工程指南。
2)综合管廊的实践应用研究特别大程度依赖于工程师的设计经验,缺乏可供参考的综合管廊试验数据支持,也鲜有*新信息技术的应用。消防工程设计中出现的难题很少得到基础科学研究领域的关注。
着眼于这些研究存在的不足和当下综合管廊消防标准进程的思考,作者觉得未来的研究应着重考虑以下方向:
1)综合管廊结构标准段优化。最重要的包含管廊标准段的截面,扩大防火分区和扩大通风分区,对于圆形、矩形截面的管廊研究不能互相套用结论。是不是真的存在一个高度、宽度范围,可继续挖掘。防火分区的扩大,需要全面考虑,扩大、合并通风分区,开启通风区间中间的逃生井盖作为火灾临时自然进风口,怎么样改进能够充分满足消防排烟要求还需要研究探讨。
2)综合管廊特殊部位的研究。对于非标准段,如十字交叉口、T形交叉口等的火灾问题需要系统的探索。
*优通风排烟准则及动作模式。事故中排烟模式需要保障快速响应、高温工作的性能,同时对火焰区的燃烧增益*小,还要做好火灾失控后的解决措施;事故后排烟模式需要仔细考虑通风排烟和自动灭火系统的联动方案。首先,通风会降低细水雾系统的灭火能力,细水雾系统灭火时也会使烟气浓度增加,降低烟气层高度;其次,事故后通风量的设置、限制进、排风温差、排风口出风风速、排烟口与周围建(构)筑物口的安全距离、自然进风或机械进风的选择,都是需要论证的问题。普通管道舱理论上存在大于200m的情形,其通风系统如何规定还缺乏研究。电缆火灾如何设计替代线性火源,使得模拟电缆区域火灾易于重复又具有可靠性和准确性,是当前试验研究未曾考虑的。通风和自动灭火介入下的轰燃、回燃等*火灾现象是否会发生,能否将事故中排烟和事故后排烟的优势相结合?
4)电缆重点防护区的建立及防灭火技术。重点防护区的划分依赖于对电缆舱室的火灾风险分析。很多类型探测装置如何保证覆盖全面,超高压电缆缺氧燃烧特性的研究,由此发展物理、化学防治方法。除电缆阻火分隔的物理阻隔概念,远期更应尝试化学隔断。
5)综合管廊火灾逃生和疏散。管廊内人员逃生更看重个体行为和有效的逃生路径设计,而非群体行为或疏散组织。疏散的对象是和综合管廊相邻的建筑内的公众,所以该部分的研究需要判别以上2点在动力学上的差异,对管廊内的逃生设计要考虑到防火门、逃生口、爬梯的布局和便携灭火设备、安全面罩的配备等;对于相邻建筑一定要做好防火隔断、通风隔断,辅以应急疏散组织。
6)综合管廊安全高效消防救援。采纳事故后通风模式的综合管廊消防救援,应立足于自熄灭和自动灭火系统,消防员的介入确保安全。在火灾发生阶段应当着重保证周边建筑内的人员安全。对于安全介入管廊的时间选择,同样依赖于密闭环境内的温度场演化规律、密闭环境内毒性气体分析、影响火源熄灭的因素和动力学诊断的相关研究。
7)综合管廊消防智慧化进程。综合管廊是面向未来的百年工程,消防安全数据的监测、收集、分析和总结应智慧化,实时共享各类运行数据、建立智能消防应急疏散系统纳入综合管廊可视化管理平台,应用无人巡检技术、物联网、人工智能、地理信息系统、建筑信息模型、云计算、大数据、虚拟现实等技术的*新成果,推动综合管廊智慧化、智能化进程。
8)综合管廊火灾结构伤害损坏及修复。传统钢筋混凝土结构在综合管廊火灾长时间的焖烧环境下遭受的损伤是不可忽视的。结构伤害损坏判定、修复办法需要明确,来保证火灾后结构恢复其耐久性。一些新材料包括超高性能混凝土、纤维强化聚合物加固混凝土结构、地质聚合物混凝土等应当大力提倡。当前还有利用装配式钢结构的趋势,但防火、防腐问题的解决还在于高性能涂料的开发。
另外,施工全套工艺流程火灾问题是需要重视。相比投入到正常的使用中的综合管廊,施工全套工艺流程中空间结构多变,人员密集,缺乏通风排烟设施和灭火装置,需要科学安排实施工程的方案、严格规范动火程序、配备可移动式消防器材和高效组织疏散和逃生。
以上是笔者基于切实问题思考综合管廊未来火灾研究的方向,对这样一些问题的系统研究和探索,将强有力地推动城市综合管廊火灾科学作为一门分支领域的发展。研究成果不能纸上谈兵,落到实处,即推动相关消防标准的完善。这些标准包括但不限于:综合管廊结构标准段设计、通风排烟规程、重点防护区消防设计方法、自动灭火系统、管廊及周边建(构)筑应急逃生疏散程序、消防救援方案、火灾结构伤害损坏及修复办法、消防验收和新型管道入廊标准等。
AcrelEMS-UT综合管廊能效管理平台集电力监控、能源管理、电气安全、照明控制、环境监视测定于一体,为建立可靠、安全、高效的综合管廊管理体系提供数据支持,从数据采集、通信网络、系统架构、联动控制和综合数据服务等方面的设计,解决了综合管廊在管理过程中存在内部干扰性强、使用单位多及协调复杂的根本问题,大幅度的提升了系统运行的可靠性和可管理性,提升了管廊基础设施、环境和设备的使用和恢复效率。
安科瑞城市地下综合管廊能效管理系统是一个深度集成的自动化平台,它集成了10KV/O.4KV变电站电力监控系统、变电所环境监控系统、智能马达监控系统、电气火灾监控系统、消防设施电源系统、防火门监控系统、智能照明系统、消防应急照明和疏散指示系统。用户可通过浏览器、手机APP获取数据,通过一个平台即可全局、整体的对管廊用电和用电安全进行进行集中监控、统一管理、统一调度,同时满足管廊用电可靠、安全、稳定、高效、有序的要求。
电力监控主要是针对10/0.4kV地面或地下变电所,对变电所高压回路配置微机保护设施及多功能仪表进行保护和监控,对0.4kV出线配置多功能计量仪表,用于测控出线回路电气参数和用能情况,可实时监控高低压供配电系统开关柜、变压器微机保护测控装置、发电机控制柜、ATS/STS、UPS,包括遥控、遥信、遥测、遥调、事故报警及记录等。
环境监测包括温湿度、烟感温感、积水浸水、可燃气体浓度、门禁、视频、空调、消防数据的采集、展示和预警,同时也可接入管廊舱室内的水泵和通风排烟风机等设备集成的第三方系统完成管廊环境综合监控。
马达监控实现对管廊电机的保护、遥测、遥信、遥控功能,实现对电机过载、短路、缺相、漏电等不正常的情况的保护、监测和报警。在需要的情况下可设为联动控制。
AcrelEMS-UT能效管理系统针对配电系统的电气安全风险隐患配置相应的电气火灾传感器、温度传感器,消防设施电源传感器、防火门状态传感器,接入消防疏散照明以及指示灯具的状态实时显示,并且对UPS的蓄电池温度、内阻进行实时监视,发生异常时通过声光、短信、APP及时预警。
防火分区单独控制,分区内设置智能控制面板就地驱动器;开关驱动器连接消防报警系统,接收消防报警信息,强制打开驱动器回路。
廊内上方安装智能照明传感器,使人员进入管廊内自动开启灯具,在管廊内停留灯具保持常亮,离开后灯具关闭。
除了现场的控制方式外,还可用电脑端实现集中控制,实时远程监控当前区域的照明情况,必要时可远程控制该区域的照明。
考虑现场模块分布较广,距离过长,除了现场的控制方式外,还可用电脑端实现集中控制,实时远程监控当前区域的照明情况,必要时可远程控制该区域的照明。
系统支持单控、区域控制、自动控制、感应控制、定时控制、场景控制、调光控制等多种控制方式,支持延时控制,避免同时亮灯负荷对配电系统造成冲击。模块不依赖系统,可独立工作,每个模块均自带时间模块,可根据经纬度自动识别日出日落时间实现自动控制功能。
综合管廊火灾问题的特殊性对火灾防治提出了新的挑战。在传统交通隧道火灾研究的经验和思路指导下,现阶段已经初步建立起涵盖自动灭火、通风排烟、探测报警、燃气爆炸及火灾动力学等专题的新领域研究框架。
综合管廊火灾研究可归类为基础问题和实践应用2个方面,其中研究对象以综合管廊标准段为主。基础问题的研究手段包括实体试验和数值模拟,研究内容聚焦在各类消防联动控制系统、方法和应急方案的防治效果,对其中的火灾现象和孕育、发展、演化规律等理论有一定的阐释;实践应用的研究形式为工程经验探讨,内容聚焦在消防设计、技术比选与经济探讨等层面,但忽视实体试验数据的支持。
国家、地方建设部门和一些行业协会正持续推进着我国的综合管廊标准化进程,逐步建设和完善相应的规范体系,但对消防专项标准有所缺失。弥补这一短板,可解决当前各地消防规范要求中存在的分歧。
【1】程洁群.综合管廊消防设计探讨[J].*学院学报,2014,30(8):54-56.
【2】张书豪,彭世尼,杜建梅,等.国内综合管廊燃气舱安全研究综述[J].煤气与热力,2019,39(11):1-9.
【6】杨立中,叶开.城市综合管廊消防标准及火灾研究综述[J].中国安全科学学报,2021,31(8):132-140.
翟雪玲,女,现任职于安科瑞电气股份有限公司,主要研究方向为智慧用电的研发与应用。